Part Number Hot Search : 
4812S 18F6625 F10200CT PT840510 RTGN432P DI204S MC33030D CT14F
Product Description
Full Text Search
 

To Download TS482 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS482
100mW STEREO HEADPHONE AMPLIFIER
s Operating from Vcc=2V to 5.5V s 100mW into 16 at 5V s 38mW into 16 at 3.3V s 11.5mW into 16 at 2V s Switch ON/OFF click reduction circuitry s High Power Supply Rejection Ratio: 85dB at
5V PIN CONNECTIONS (top view)
TS482ID, TS482IDT - SO8
OUT (1) VIN- (1) VIN+ (1) GND
1 2 3 4
8 7 6 5
VCC OUT (2) VIN- (2) VIN+ (2)
s High Signal-to-Noise ratio: 110dB(A) at 5V s High Crosstalk immunity: 100dB (F=1kHz) s Rail to Rail input and output s Unity-Gain Stable s Available in SO8, MiniSO8 & DFN8
DESCRIPTION The TS482 is a dual audio power amplifier able to drive a 16 or 32 stereo headset down to low voltages. It's delivering up to 100mW per channel (into 16 loads) of continuous average power with 0.1% THD+N from a 5V power supply.
TS482IST - MiniSO8
OUT (1) VIN- (1) VIN+ (1) GND
1 2 3 4
8 7 6 5
VCC OUT (2) VIN- (2) VIN+ (2)
TS482IQT - DFN8
OUT
(1)
1 2 3 4
8 7 6 5
Vcc OUT (2) VIN - (2) VIN + (2)
The unity gain stable TS482 can be configured by external gain-setting resistors.
VIN - (1) VIN + (1) GND
APPLICATIONS s Stereo Headphone Amplifier s Optical Storage s Computer Motherboard s PDA, organizers & Notebook computers s High end TV, Set Top Box, DVD Players s Sound Cards ORDER CODE
Part Number TS482ID/DT TS482IST TS482IQT Temperature Range Package Marking D * -40, +85C * * 482I S Q
TYPICAL APPLICATION SCHEMATIC
Rfeed1 1F Right In Cin1
+
2.2F 2.2F
+
Left In
Cin2
Rfeed2
MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT))
June 2003
+
+
3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1F 6 3.9k 4 100k Rpol 3.9k
+
Vcc
2 20F +
RL=32Ohms
Cout1 Cout2
+
RL=32Ohms
220F
1/24
TS482
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Toper Tstg Tj Rthja Supply voltage Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8
1)
Parameter
Value 6 -0.3 to VCC +0.3 -40 to + 85 -65 to +150 150 175 215 70 0.71 0.58 1.79 2 200 200 250 see note 3)
Unit V V C C C
C/W
Power Dissipation 2) SO8 Pd MiniSO8 DFN8 ESD Human Body Model (pin to pin) ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) Output Short-Circuit Duration
W kV V mA C
1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25C, Tjunction = 150C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device.
OPERATING CONDITIONS
Symbol VCC RL CL VICM RTHJA Supply Voltage Load Resistor Load Capacitor RL = 16 to 100 RL > 100 Common Mode Input Voltage Range Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN81) Parameter Value 2 to 5.5 >= 16 400 100 GND to VCC 150 190 41 Unit V pF V
C/W
1. When mounted on a 4-layer PCB.
Components Rin Cin Rfeed Cs Cb Cout Rpol Av 2/24
Functional Description Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass capacitor which provides half supply filtering Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Closed loop gain = -Rfeed / Rin
TS482
ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5.5 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
60 95
65 67.5 100 107
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 60mW, 20Hz F 20kHz RL = 16, Pout = 90mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.35 0.45 106
0.03 0.03 85 120
%
PSRR IO
dB mA
VO
4.45 4.2 95
0.4 4.6 0.55 4.4 110
0.48 V 0.65
SNR
dB
Crosstalk
100 80 100 80 1 2.2 0.7
dB
CI GBP SR
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
3/24
TS482
ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25C (unless otherwise specified) 2)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5.3 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
23 36
27 28 38 42
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 16mW, 20Hz F 20kHz RL = 16, Pout = 35mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwith Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.2 0.45 64
0.03 0.03 80 75
%
PSRR IO
dB mA
VO
2.85 2.68 92
0.3 3 0.45 2.85 107
0.38 V 0.52
SNR
dB
Crosstalk
100 80 100 80 1 2 0.7
dB
CI GBP SR
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranted with correlation measurements at 2V and 5V
4/24
TS482
ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25C (unless otherwise specified) 2)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5.1 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
12.5 17.5
13.5 14.5 20.5 22
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 10mW, 20Hz F 20kHz RL = 16, Pout = 16mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.2 0.45 45
0.03 0.03 75 56
%
PSRR IO
dB mA
VO
2.14 1.97 89
0.25 2.25 0.35 2.15 102
0.325 V 0.45
SNR
dB
Crosstalk
100 80 100 80 1 2 0.7
dB
CI GBP SR
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranted with correlation measurements at 2V and 5V
5/24
TS482
ELECTRICAL CHARACTERISTICS VCC = +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Symbol ICC VIO IIB Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = VCC/2) Output Power THD+N THD+N THD+N THD+N = = = = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 Min. Typ. 5 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
7 9.5
8 9 11.5 13
mW
THD + N
Total Harmonic Distortion + Noise (Av=-1) 1) RL = 32, Pout = 6.5mW, 20Hz F 20kHz RL = 16, Pout = 8mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL : RL = 32 VOH : RL = 32 VOL : RL = 16 VOH : RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) (RL = 32, THD +N < 0.2%, 20Hz F 20kHz) Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz Input Capacitance Gain Bandwith Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.2 0.42 33
0.02 0.025 75 41.5
%
PSRR IO
dB mA
VO
1.67 1.53 88
0.24 1.73 0.33 1.63 101
0.295 V 0.41
SNR
dB
Crosstalk
100 80 100 80 1 2 0.65
dB
CI GBP SR
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
6/24
TS482
Index of Graphs
Description Open Loop Gain Phase and Gain Margin vs Power Supply Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistance Power Dissipation vs Output Power Power Derating Curves Current Consumption vs Power Supply Voltage PSRR vs Frequency THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Equivalent Input Noise voltage vs Frequency Output Voltage Swing vs Supply Voltage Crosstalk vs Frequency Lower Cut Off Frequency Curves Statistical Results on THD+N Figure 1 to 10 11 to 20 21 to 23 23 to 27 28 to 31 32 33 34 35 to 49 50 to 54 55 to 58 59 60 61 to 65 66, 67 68 to 79 Page 8, 9 9 to 11 11 11, 12 12, 13 13 13 13 13 to 16 16 17 17 17 18 18, 19 19 to 21
7/24
TS482
Fig. 1 : Open Loop Gain and Phase vs Frequency Fig. 2 : Open Loop Gain and Phase vs Frequency
80 Gain 60 40
Gain (dB)
180 Vcc = 5V RL = 8 Tamb = 25C 160 140 120
Phase (Deg)
80 Gain 60 40
Gain (dB)
180 Vcc = 2V RL = 8 Tamb = 25C 160 140 120 100
Phase (Deg) Phase (Deg) Phase (Deg)
100 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
20 0 -20 -40 0.1
Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Fig. 3 : Open Loop Gain and Phase vs Frequency
Fig. 4 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 16 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 16 Tamb = 25C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Fig. 5 : Open Loop Gain and Phase vs Frequency
Fig. 6 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 32 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 32 Tamb = 25C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
8/24
TS482
Fig. 7 : Open Loop Gain and Phase vs Frequency Fig. 8 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 600 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 600 Tamb = 25C
160 140 120 100
Phase (Deg) Phase (Deg)
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
40 20 0 -20 -40 0.1 Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Fig. 9 : Open Loop Gain and Phase vs Frequency
Fig. 10 : Open Loop Gain and Phase vs Frequency
180 80 60
Gain (dB)
180 80 60 Gain Vcc = 2V RL = 5k Tamb = 25C 160 140 120
Gain
Vcc = 5V RL = 5k Tamb = 25C
160 140 120
Phase (Deg)
100 Phase 80 60
Gain (dB)
40 20 0 -20 -40 0.1
40 20 0 -20 Phase
100 80 60 40 20 0
40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
-40 0.1
1
10 100 Frequency (kHz)
1000
10000
-20
Fig. 11 : Phase Margin vs Power Supply Voltage
Fig. 12 : Gain Margin vs Power Supply Voltage
50 RL=8 Tamb=25C 40
Phase Margin (Deg)
50 RL=8 Tamb=25C 40
30
Gain Margin (dB)
30
20
CL= 0 to 500pF
20
CL=0 to 500pF
10
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
9/24
TS482
Fig. 13 : Phase Margin vs Power Supply Voltage Fig. 14 : Gain Margin vs Power Supply Voltage
50
50 RL=16 Tamb=25C
40
Phase Margin (Deg)
40
30
Gain Margin (dB)
CL= 0 to 500pF
30
20
20
CL=0 to 500pF
10 RL=16 Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Fig. 15 : Phase Margin vs Power Supply Voltage
Fig. 16 : Gain Margin vs Power Supply Voltage
50
50 RL=32 Tamb=25C
40
Phase Margin (Deg)
40 CL= 0 to 500pF
Gain Margin (dB)
30
30
20
20 CL=0 to 500pF 10
10 RL=32 Tamb=25C 0 2.0 2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Fig. 17 : Phase Margin vs Power Supply Voltage
Fig. 18 : Gain Margin vs Power Supply Voltage
70 60
Phase Margin (Deg)
20
CL=0pF CL=100pF CL=200pF
CL=0pF 40 30 20 10 RL=600 Tamb=25C 2.5
CL=500pF
Gain Margin (dB)
50
10
CL=500pF
RL=600 Tamb=25C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
0 2.0
10/24
TS482
Fig. 19 : Phase Margin vs Power Supply Voltage Fig. 20 : Gain Margin vs Power Supply Voltage
70 60
Phase Margin (Deg)
20
CL=0pF
Gain Margin (dB)
50 40 30 20 10 0 2.0 RL=5k Tamb=25C 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 CL=0pF CL=300pF CL=500pF
CL=100pF
10
CL=200pF
CL=500pF
RL=5k Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
Fig. 21 : Output Power vs Power Supply Voltage
Fig. 22 : Output Power vs Power Supply Voltage
250 225 200 Output power (mW) 175 150 125 100 75 50 25 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 THD+N=0.1% Av = -1 RL = 8 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
200 175 THD+N=1% 150
Output power (mW)
125 100 75 50
Av = -1 RL = 16 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
THD+N=1%
THD+N=0.1% 25 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5
Fig. 23 :Output Power vs Power Supply Voltage
Fig. 24 : Output Power vs Load Resistance
200
100 Av = -1 RL = 32 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
180
THD+N=1%
160
Output power (mW)
THD+N=1%
Output power (mW)
140 120 100 80 60 40 20 THD+N=0.1%
75
Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25C
THD+N=10%
50
25
THD+N=0.1%
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
0
8
16
24
32 40 48 Load Resistance ( )
56
64
11/24
TS482
Fig. 25 : Output Power vs Load Resistance Fig. 26 : Output Power vs Load Resistance
50
70 60
Output power (mW)
THD+N=1%
Output power (mW)
50 40
Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25C
45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance (ohm) THD+N=1%
Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25C
THD+N=10% 30 20 10 0 THD+N=0.1%
THD+N=10%
8
16
24
32 40 48 Load Resistance (ohm)
56
64
0
56
64
Fig. 27 : Output Power vs Load Resistance
Fig. 28 : Power Dissipation vs Output Power
25 Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25C
20
Output power (mW)
Power Dissipation (mW)
160 Vcc=5V F=1kHz 140 THD+N<1% RL=8 120 100 80 60 RL=16 40 20 0 0 20 40 60 RL=32 80 100 120 140
THD+N=1% 15
THD+N=10% 10
5 THD+N=0.1% 0 8 16 24 32 40 48 Load Resistance (ohm) 56 64
Output Power (mW)
Fig. 29 : Power Dissipation vs Output Power
Fig. 30 : Power Dissipation vs Output Power
70 Vcc=3.3V 60 F=1kHz THD+N<1% 50 40 30 RL=16 20 10 0 RL=32
40
Power Dissipation (mW) RL=8
Vcc=2.6V F=1kHz THD+N<1% RL=8
Power Dissipation (mW)
30
20 RL=16 10 RL=32 0
0
10
20
30
40
50
60
0
5
10
15
20
25
30
Output Power (mW)
Output Power (mW)
12/24
TS482
Fig. 31 : Power Dissipation vs Output Power Fig. 32 : Power Derating vs Ambiant Temperature
25
Power Dissipation (mW)
Vcc=2V F=1kHz 20 THD+N<1% RL=8 15
10 RL=16 5 RL=32 0 0 2 4 6 8 10 12 14
Output Power (mW)
Fig. 33 : Current Consumption vs Power Supply Voltage
Fig. 34 : Power Supply Rejection Ration vs Frequency
6 No load Current Consumption (mA) 5 80 Ta=85C Ta=-40C
PSRR (dB)
100
Vcc=5V
4 3
60 40 20 0 20
Vcc=3.3V
Vcc=2.6V & 2V
Ta=25C 2 1 0
Vripple=100mVpp Vpin3,5=Vcc/2 (forced bias) RL >= 8 0db=70mVrms Tamb=25C 100 1000 10000 Frequency (Hz) 100000
0
1
2 3 Power Supply Voltage (V)
4
5
Fig. 35 : THD + N vs Output Power
Fig. 36 : THD + N vs Output Power
10 RL = 8 F = 20Hz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.6V
10 RL = 16 F = 20Hz Av = -1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V
1
THD + N (%)
Vcc=5V
THD + N (%)
0.1
0.1 0.01
Vcc=3.3V
Vcc=3.3V
Vcc=5V
0.01
1
10 Output Power (mW)
100
1E-3
1
10 Output Power (mW)
100
13/24
TS482
Fig. 37 : THD + N vs Output Power Fig. 38 : THD + N vs Output Power
10 RL = 32 F = 20Hz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=2V Vcc=2.6V
10 RL = 600 F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
THD + N (%)
THD + N (%)
Vcc=3.3V Vcc=5V
0.01
0.01
1E-3 100 0.01 0.1 Output Voltage (Vrms) 1
1E-3
1
10 Output Power (mW)
Fig. 39 : THD + N vs Output Power
Fig. 40 : THD + N vs Output Power
10 RL = 5k F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
10 RL = 8 F = 1kHz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.6V
THD + N (%)
THD + N (%)
0.01
0.1
Vcc=3.3V
1E-3 0.01 0.01 0.1 Output Voltage (Vrms) 1 1 10 Output Power (mW)
Vcc=5V
100
Fig. 41 : THD + N vs Output Power
Fig. 42 : THD + N vs Output Power
10 RL = 16 F = 1kHz Av = -1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V
10 RL = 32 F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=2V Vcc=2.6V
1
THD + N (%)
0.1
0.01
THD + N (%)
Vcc=3.3V Vcc=5V
0.01
Vcc=3.3V
Vcc=5V
1E-3
1
10 Output Power (mW)
100
1E-3
1
10 Output Power (mW)
100
14/24
TS482
Fig. 43 : THD + N vs Output Power Fig. 44 : THD + N vs Output Power
10 RL = 600 F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
10 RL = 5k F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
THD + N (%)
0.01
THD + N (%)
0.01
1E-3 0.01
0.1 Output Voltage (Vrms)
1
1E-3 0.01
0.1 Output Voltage (Vrms)
1
Fig. 45 : THD + N vs Output Power
Fig. 46 : THD + N vs Output Power
10 RL = 8 F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.6V
10 RL = 16 F = 20kHz Av = -1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V
THD + N (%)
0.1
THD + N (%)
Vcc=3.3V Vcc=5V
1
0.1
Vcc=3.3V
Vcc=5V
0.01
1
10 Output Power (mW)
100
0.01
1
10 Output Power (mW)
100
Fig. 47 : THD + N vs Output Power
Fig. 48 : THD + N vs Output Power
10 RL = 32 F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V
10 RL = 600 F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V Vcc=3.3V
THD + N (%)
THD + N (%)
0.1
Vcc=2.6V
0.1
Vcc=5V
0.01 1
Vcc=3.3V
Vcc=5V
0.01
10 Output Power (mW)
100
0.01
0.1 Output Voltage (Vrms)
1
15/24
TS482
Fig. 49 : THD + N vs Output Power Fig. 50 : THD + N vs Frequency
10 RL = 5k F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V Vcc=3.3V Vcc=5V
0.1 RL=8 Av=-1 Bw < 125kHz Tamb=25C
THD + N (%)
0.1
0.01 0.01 0.01 0.1 Output Voltage (Vrms) 1 20 100 1000 Frequency (Hz) 10000 20k
Fig. 51 : THD + N vs Frequency
Fig. 52 : THD + N vs Frequency
THD + N (%)
Vcc=2V, Po=10mW Vcc=2.6V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW
0.1 RL=16 Av=-1 Bw < 125kHz Tamb=25C THD + N (%) THD + N (%)
Vcc=2V, Po=8mW Vcc=2.6V, Po=18mW Vcc=3.3V, Po=35mW Vcc=5V, Po=90mW
0.1 RL=32 Av=-1 Bw < 125kHz Tamb=25C
Vcc=2V, Po=6.5mW Vcc=2.6V, Po=12mW Vcc=3.3V, Po=16mW Vcc=5V, Po=60mW
0.01
0.01 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k
Fig. 53 : THD + N vs Frequency
Fig. 54 : THD + N vs Frequency
0.1 RL=600 Av=-1 Bw < 125kHz Tamb=25C THD + N (%)
Vcc=3.3V, Vo=1Vrms
0.1 RL=5k Av=-1 Bw < 125kHz Tamb=25C
THD + N (%)
Vcc=5V, Vo=1.4Vrms
Vcc=5V, Vo=1.4Vrms Vcc=3.3V, Vo=1Vrms
0.01
Vcc=2.6V, Vo=0.75Vrms Vcc=2V, Vo=0.55Vrms
0.01
Vcc=2.6V, Vo=0.75Vrms
Vcc=2V, Vo=0.55Vrms
1E-3
20
100
1000 Frequency (Hz)
10000 20k
1E-3
20
100
1000 Frequency (Hz)
10000 20k
16/24
TS482
Fig. 55 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
110 Av = -1 108 THD+N < 0.2% 106 Tamb = 25C 104 102 100 98 96 94 92 90 2.0 2.5 RL=16 3.0 3.5 4.0 4.5 5.0 RL=8 RL=32
Fig. 56 : Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)
110 108 Signal to Noise Ratio (dB) 106 104 102 100 98 96 94 92 90 2.0 2.5 3.0 3.5 4.0 4.5 5.0 RL=5k RL=600 Av = -1 THD+N < 0.2% Tamb = 25C
Signal to Noise Ratio (dB)
Power Supply (V)
Power Supply (V)
Fig. 57 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
Fig. 58 : Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A
120 115 110 RL=32 105 100 95 90 2.0 RL=16 Av = -1 THD+N < 0.2% Tamb = 25C
120 115 110 105 RL=5k 100 95 90 2.0 Av = -1 THD+N < 0.2% Tamb = 25C
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
RL=600
RL=8
2.5
3.0
3.5
4.0
4.5
5.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply (V)
Power Supply (V)
Fig. 59 : Equivalent Input Noise Voltage vs Frequency
Fig. 60 : Output Voltage Swing vs Power Supply Voltage
Equivalent Input Noise Voltage (nv/ Hz)
25 Vcc=5V Rs=100 Tamb=25C 20
VOH & VOL (V)
5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 RL=8 RL=16 RL=32 Tamb=25C
15
10
5 0.02
0.1
1 Frequency (kHz)
10
0.0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
17/24
TS482
Fig. 61 : Crosstalk vs Frequency Fig. 62 : Crosstalk vs Frequency
100
100
80
ChB to ChA ChA to ChB
80
ChB to ChA ChA to ChB
Crosstalk (dB)
60 RL=8 Vcc=5V Pout=100mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Crosstalk (dB)
60 RL=16 Vcc=5V Pout=90mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
40
40
20
20
Fig. 63 : Crosstalk vs Frequency
Fig. 64 : Crosstalk vs Frequency
120
100
100
80 ChB to ChA & ChA to Chb
Crosstalk (dB)
60 RL=32 Vcc=5V Pout=60mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Crosstalk (dB)
80 60 40 20 0
ChB to ChA & ChA to Chb
40
20
RL=600 Vcc=5V Vout=1.4Vrms Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Fig. 65 : Crosstalk vs Frequency
Fig. 66 : Lower Cut Off Frequency vs Output Capacitor
120 100 80 60 40 20 0 RL=5k Vcc=5V Vout=1.5Vrms Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k ChB to ChA & ChA to Chb
1000
-3dB Cut Off Frequency (Hz)
RL=8 100 RL=16 RL=32 10
Crosstalk (dB)
1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Output Capacitor Cout ( F)
18/24
TS482
Fig. 67 : Lower Cut Off Frequency vs Input Capacitor Fig. 68 : Typical Distribution of THD+N
1000
40 36
Rin=3.9k
-3dB Cut Off Frequency (Hz)
32
Number of Units
Rin=10k
100
28 24 20 16 12 8 4
Rin=22k
Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C
10
1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
Input Capacitor Cin ( F)
THD+N (%)
Fig. 69 : Best Case Distribution of THD+N
Fig. 70 : Worst Case Distribution of THD+N
40 36 32
Number of Units
40 Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
28 24 20 16 12 8 4
Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C
0.042
0.048
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
Fig. 71 : Typical Distribution of THD+N
Fig. 72 : Best Case Distribution of THD+N
40 36 32
Number of Units
40 Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
28 24 20 16 12 8 4
Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C
0.042
0.048
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
19/24
TS482
Fig. 73 : Worst Case Distribution of THD+N Fig. 74 : Typical Distribution of THD+N
40 36 32
Number of Units
20 Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C 18 16
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
14 12 10 8 6 4 2
Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C
0.042
0.048
0 0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
Fig. 75 : Best Case Distribution of THD+N
Fig. 76 : Worst Case Distribution of THD+N
20 18 16 Number of Units 14 12 10 8 6 4 2 0 0.012 0.018 0.024 0.030 0.036 0.042 0.048 Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C
20 18 16
Number of Units
14 12 10 8 6 4 2
Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C
0 0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
Fig. 77 : Typical Distribution of THD+N
Fig. 78 : Best Case Distribution of THD+N
40 36 32
Number of Units
40 Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
28 24 20 16 12 8 4
Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C
0.042
0.048
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
20/24
TS482
Fig. 79 : Worst Case Distribution of THD+N
40 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C
0.042
0.048
THD+N (%)
21/24
TS482 PACKAGE MECHANICAL DATA
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
22/24
TS482 PACKAGE MECHANICAL DATA
23/24
TS482 PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Ml M Si SiSd Si l d U i d Ki d U i dS
24/24


▲Up To Search▲   

 
Price & Availability of TS482

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X